Schlechter Coden mit KI?

Eine Untersuchung kam zu dem Ergebnis, dass die Verwendung von KI-basierten Coding-Hilfen die Codequalität verschlechtert.

Ach tatsächlich? *Augenverdreh-Smiley*

Programmierer sind bekanntermaßen faul. Wenn man ihnen die Möglichkeit gibt, noch fauler zu sein, werden sie sie nutzen. Und dummerweise sind die Qualitätsmängel einer KI-Codeempfehlung nicht immer offensichtlich. Letztlich muss einem aber klar sein: Es ist copy+paste-Coding. Und das hat immer eingebaute Nachteile, weil eine ggf. sinnvolle Abstrahierung nicht stattfindet und manchmal notwendige Änderungen übersehen werden. Copy+paste-Fehler gehören zu den häufigsten. Die KI kann auch Fehler machen, Denken muss man schon noch selbst, das kann sie nämlich nicht!

Ich bin mal gespannt, wann erste, anspruchsvollere Dev Leads die Coding Rule rausgeben, keinen KIs als Programmiersklave zu verwenden. Und, wie das ggf. überprüft werden soll.

Übrigens sind auch Lizenzfragen hier relevant. Manch ein KI-generierter Codeschnipsel könnte von Scannern als Duplikat einer restriktiv lizensierten Stelle aus irgendeinem gitbub-Repo identifiziert werden. Der zuständige Entwickler* kann dann schlecht mit dem Finger auf die KI zeigen, denn die Verantwortung für den erzeugten Code trägt er. Dieser Verantwortung müssen Entwickler* gerecht werden und generierten Code kritisch hinterfragen, und zwar mindestens genauso kritisch, als wäre er von einem Kollegen geschrieben worden.

Wer KI-Instrumente einsetzt, sollte nicht von Faulheit getrieben sein – sondern von Vorsicht.

Allgemeine Beschimpfung endender Kompatibilität

Am 24. Oktober beendet Whatsapp die Unterstützung für Geräte mit Android-Versionen unter 5. Wer ein Smartphone besitzt, für das es keine neuere Android-Version als 4 Punkt irgendwas gibt, steht vor der Wahl, das Gerät wegzuschmeißen und ein neues zu kaufen, oder alle seine Freunde zu verlieren.

Whatsapp begründet den Schritt mit fehlenden Sicherheitsupdates für die alten Versionen, fehlender Unterstützung für App-Features (hier würden mich mal die Details interessieren) und weil kaum noch jemand solche alten Geräte verwendet.

Im Mülleimer ist noch Platz!

Natürlich verwenden nur noch 0,00000irgendwas Prozent aller Android-Nutzer so alte Geräte, aber in absoluten Zahlen dürften das trotzdem nicht wenige sein. Ein zwar altes, aber grundsätzlich noch funktionierendes Gerät muss also auf den Elektromüll geschmissen werden, weil die Whatsapp-Entwickler keine Lust mehr haben, die App-Unterstützung für Android 4 weiter zu gewährleisten, sprich: sich mit alten Bibliotheken oder Sicherheitslücken herumzuschlagen. Irgendwo verständlich, klar.

Denn die Ursache des Übels liegt natürlich nicht bei den Entwicklern von Whatsapp, sondern bei denen von Android.

Wie selbstverständlich muss jedes Jahr eine tolle neue better-than-ever Android-Version auf den Markt kommen! Und um zu kaschieren, dass diese für die meisten Nutzer eigentlich keine nennenswerten Verbesserungen bringt, ändert man immer wieder das Design und behauptet, dass die Version noch sicherer ist als die vorherige. Was ja auch stimmt.

Bloß: Es spräche ja nichts dagegen, die Sicherheitsprobleme der vorherigen Version einfach durch Updates zu beseitigen. Bei LTS-Versionen von Linux-Betriebssystemen funktioniert das ja auch schon viele Jahre lang (und Android ist ein Linux). Würde man effizienter, modularer programmieren (und keine Bloatware installieren), wäre auch auf älteren Geräten mit wenig Speicher noch genug Platz für alles. Sicherheitspatches erfordern wohl kaum Megabyteweise neuen Binärcode!

Hach, sie können ja nicht anders

Da bekanntermaßen Hardware-Hersteller überhaupt kein Interesse daran haben, ihren Kunden zu ermöglichen, ältere Geräte länger zu nutzen, verschwenden die natürlich keine Entwicklerressourcen an solche Upgrades. Lieber springen sie auf den Google-Zug auf und bringen jedes Jahr eine neue Geräte-Generation, die eine noch tolle Kamera hat, ein noch größeres Display, ein noch hübscheres Notch oder das man in den Pool mitnehmen oder falten kann, denn das ist es ja, was wir Menschen unbedingt brauchen. Inzwischen gibt es auf diesem Planeten grob geschätzt 14 Milliarden Smartphones, jeder erwachsene Mensch besitzt also längst weit mehr als zwei (plus Tablets). Mehr als die Hälfte ist also überflüssig.

Letztlich reden wir hier von einer Ressourcenverschwendung, die das Gegenteil von nachhaltig ist und einen Material- und Energieverbrauch mit sich bringt, der in einer Welt, die vor dem Klimakollaps steht, verboten gehört. Aber die Anbieter haben ja keine Alternative: Wenn sie keine neuen Betriebssysteme oder Geräte verkaufen können, entfallen schlicht die Einnahmen und sie müssen den Laden dicht machen. Helfen könnte bei Betriebssystemen ein Abo-Modell. Gibt’s ja in anderen Branchen auch. Neue, noch leistungsfähigere Hardware ist unnötiger Fortschritt auf Kosten des Planeten. Das ist krank.

Nur ein paar Beispiele

Bei Apple ist es übrigens nur ein bisschen besser. Für mein 11 Jahre altes, aber noch tadellos funktionierendes MacBook Air, gibt es kein aktuelles MacOS X mehr, und das anstehende Update für den Chrome-Browser installiert sich nicht unter dem alten OS. Folglich bin ich fürderhin gezwungen, einen veralteten Browser zu verwenden, mir einen anderen zu suchen oder das Gerät zu ersetzen.

Noch mehr Beispiele? Ein kleines noch aus eigener Erfahrung: Beim letzten größeren Linux-Kernel-Upgrade musste ich meinen tadellos funktionierenden, nur wenige Jahre alten WLAN-Stick ersetzen, weil der Treiber für den enthaltenen Chip aus dem Kernel entfernt worden war. Wer trifft eigentlich solche rücksichtslosen Entscheidungen, die letztlich beim Endkunden Kosten und Elektromüll verursachen?! Wer trägt die Verantwortung, wem kann ich die Rechnung schicken, wem das Altgerät zwecks umweltgerechter Entsorgung?

Der Gipfel der Ressourcenverschwendung und des Hardware-Wegwerf-Wahns ist übrigens gar nicht Android, sondern Windows. Version 11 kann bekanntlich (normalerweise) nur auf Rechnern mit einem spezifischen Hardwaremodul installiert werden. Sobald also der Support für Windows 10 endet (14. Oktober 2025), müssen alle PCs ohne dieses Modul sicherheitshalber weggeschmissen werden, weil es keine Lücken-Updates mehr gibt (und Windows 10 ist voller Lücken, ach übrigens: Mit Linux kann man solche PCs noch lange weiter betreiben!). Wie viele Geräte da auf den Schrott wandern werden (oder willkommene Opfer für Verschlüsselungstrojaner werden), wage ich nicht zu schätzen.

EDIT: Inzwischen sind zwei weitere prominente Fälle aus dem Android-Bereich bekannt geworden: Die ZDF Mediathek und Youtube laufen nicht mehr unter Android 5. Immerhin verweisen beide Apps auf “Im Browser öffnen”. Was ein bisschen lächerlich ist, denn der läuft ja auch auf dem Gerät, warum dann nicht die Apps, die ja einfach in einem Chrome Webview laufen könnten?!

Diese Funktion ist @Deprecated, weil ich den Namen nicht mehr cool fand

Nicht unerwähnt bleiben soll der Aufwand, den uns als Entwickler jeder endende Software-Upgrade-Pfad aufzwingt. Jede Anwendung verwendet ja irgendwelche Bibliotheken, die ihrerseits gewisse Systemanforderungen haben. Schlicht ausgedrückt: Sobald eine neue Version von ir-gend-was.jar eine Änderung an unserem Code oder gar an den Systemvoraussetzungen unserer Anwendung ändert, müssen wir zwingend aktiv werden – aber niemand bezahlt diesen Aufwand! Diese Kosten – Zeit, Personal, Energie – müssen in unser Produkt von vornherein eingepreist werden, obwohl sie gar nicht seriös kalkuliert werden können, weil sie nicht einmalig anfallen wie der Kaufpreis, sondern laufend.

Und solche Anpassungen müssen wir dauernd machen: Nicht nur bei Android-Apps, wenn Google z.B. verlangt, dass wir die Billing-Library Version 5 für In-App-Käufe verwenden müssen, ansonsten dürfen wir unsere App nicht mehr updaten. Natürlich hat sich die API geändert, also müssen wir Dokus lesen und Codeanpassungen vornehmen, meist ohne dass unsere App dadurch auch nur einen Euro mehr Einnahmen erzeugt. Unverschämtheit!

Oder man denke an PHP-Skripts, die nicht mehr funktionieren, weil der Zugriff auf unbekannte Array-Keys seit PHP 8 standardmäßig eine Warnung statt eine Notice auswirft. Noch schlimmer waren nur die grundlegenden Änderungen am MySQL-Treiber, der alle vorherigen Funktionsnamen änderte. Welche Aufwände das weltweit verursacht hat, und wie viele PHP-Skripte seitdem einfach nicht mehr funktionieren, weil sich niemand darum kümmert, kann niemand schätzen. Nichts gegen Produktpflege, Refactoring, Bugfixing oder von mir aus Verschönerung einer API. Aber wenn man weiß, dass andere Entwickler davon abhängig sind, und eine abwärtsinkompatible Änderung Aufwände verursacht, die man selbst ja nicht hat und deshalb ein Problem anderer Leute sind, dann ist man schlicht ein rücksichtsloser Energieverschwender. Ach übrigens: Wenn man von vornherein seine Software sauber konzipiert, braucht man hinterher weniger zu ändern! Buchempfehlung siehe rechts. Und ansonsten hat man gefälligst die Bedürfnisse des Rests der Welt über die eigenen zu stellen.

Ich verlange daher zeitlich unbegrenzten Update-Support für alle Betriebssysteme wie Linux, Android, Windows, MacOS sowie für alle Open-Source-Software-Bibliotheken und -Plattformen. Neue Features können jederzeit hinzugefügt werden (bitte modular, so dass sie nur dann automatisch nachgeladen werden, wenn gewünscht bzw. wenn der Hardware-Support vorhanden ist), aber niemals dürfen vorhandene Funktionen entfernt oder geändert werden. Tatsächlich hat diese Herangehensweise einen immensen Vorteil: Es muss nur noch eine Software-Version gepflegt und mit Sicherheitsupdates versorgt werden, nämlich die aktuelle. Weniger Stress = mehr Zeit für besseres Coden!

tl;dr: Be smart, stay compatible.

Die Komma-Falle

Es war einmal … nein, kein Komma. Ein harmloser Software-Entwickler.

Seine Aufgabe bestand darin, eine aus irgendeinem Tool exportierte XML-Datei zu laden und in Java-Objekte zu serialisieren.

In einer Beispiel-Datei (ein Schema oder eine Doku wurden nicht zur Verfügung gestellt) stand zum Beispiel so etwas wie das hier:

<numFiles>712</numFiles>

Das ist ja ganz einfach, man schreibt sich eine Model-Klasse:

public class Whatever {
  ...
  private long numFiles;
  ...
  // getter und setter
}

Schlau, wie wir sind, nehmen wir long, nicht int, denn man weiß ja nie, von was für Dateimengen hier die Rede ist.

Man kann Jackson benutzen, um aus dem XML ein Java-Objekt zu machen:

XmlMapper xmlMapper = new XmlMapper();
Whatever whatever = xmlMapper.readValue(new File(filePath), Whatever.class);

Der Code funktionierte einwandfrei. Er lief (gefühlt) jahrelang problemlos.

Bis eines schönen Tages an einem Freitag dem 13. jemand einen Fehler meldete: Eine seiner XML-Dateien könne nicht geladen werden. Das Programm habe wohl einen Fehler.

Es gab ja keine Codeänderung, also musste es an der fraglichen XML-Datei liegen.

In der Datei fand sich nun folgendes:

<numFiles>2,315</numFiles>

Das ist aus Sicht des XML-Parsers natürlich kein Long, sondern ein String oder (bestenfalls, falls englische Locale voreingestellt ist) ein Double.

Wer zum Kuckuck schreibt einen numerischen Wert in eine XML-Datei mit Tausendertrennzeichen?!

Dazu gibt’s nur einen möglichen Kommentar:

#fail

In diesem Sinne, mögen euch unnötige Kommas erspart bleiben!

Daten zu Daten, Code zu Code

Es war einmal ein Programmierer wie jeder andere. Sprich: Kurz vor Feierabend bekam er die Aufgabe, mal eben schnellTM einem neuen Kunden Zugriff auf eine bestimmte Ressource zu gewähren.

Was glauben Sie, warum er sein für den Abend geplantes Date mit Pizza&Kuscheln absagen musste?

Klarer Fall: Weil er oder einer seiner Kollegen bzw. Vorgänger das Bibel-Zitat aus der Überschrift nicht kannte.

Daten als Code

Wie immer sagt ein Beispiel mehr als 1000 Worte, und ich will ja nicht Ihre Zeit verschwenden. Schauen Sie sich daher das folgende Codebildchen an.

switch(userrole) {
case "DRG_BES":
case "DRG_ARG":
case "DRG_EFT":
    mgrNr = 332;
    break;
case "DRG_ALB":
    mgrNr = 451;
    break;
case "DRG_EDV":
    mgrNr = 322;
    break;
case "DRG_BFF":
    mgrNr = 537;
    break;
case "DRG_DDA":
    mgrNr = 336;
    break;
...

Wohlgemerkt handelt es sich hier um einen (leicht verfremdeten) originalen Ausschnitt aus einer umfangreichen Software-Lösung in Java. Die case-Konstruktion im analysierten Gesamtcode war noch länger, und ganz ähnliche Monster gab es an weiteren Stellen.

In einem anderen Projekt gab es auch mal eine ganz ähnliche Konstruktion zur Behandlung von speziellen Userrechten, daher der eingangs erwähnte Anwendungsfall unseres armen Programmierers. Denn der muss, um seine Aufgabe zu lösen, nun den Code erweitern, und zwar möglicherweise an mehreren Stellen. Dann muss er die Software testen, bauen und deployen oder, sollte es sich nicht um eine Serveranwendung handeln, ein Setup-Paket an einen Kunden schicken.

Wie gesagt: das war’s mit dem Date. Denn getreu Murphy’s Law geht dabei irgendwas schief … na ja, ich denke, Sie kennen das, haben es selbst erlebt oder erleiden müssen und fühlen mit unserem armen Programmierer, der sich an der Schwelle zur grausigsten aller Schrottsoftwareapokalypsen wähnt.

Daten sind Daten

Der Knackpunkt ist natürlich: Wenn Sie Daten als Code schreiben, müssen Sie die Anwendung kompilieren, bauen und ausrollen, um etwas zu ändern. Befinden sich Daten da, wo Daten hingehören (in Datenbanken oder Ressourcen- bzw. Konfigurationsdateien), und ist der Code generisch, genügt es, die Daten an der richtigen Stelle zu ändern, was in 99,99% der Fälle deutlich weniger Aufwand ist.

Der zugehörige Ersatz-Code für obiges Konstrukt könnte beispielsweise so aussehen:

mgrNr = userSettings.getMgrNrForUserrole(userrole);

Dabei ist es dem Code an dieser Stelle egal, ob userSettings ein simples POJO ist, in das die richtigen Daten irgendwann vorher geladen wurden, oder ob die Klasse den gewünschten Wert in diesem Moment aus einer Datei oder Datenbank liest. Im ersteren Fall muss die Anwendung möglicherweise neu gestartet werden, oder anderweitig signalisiert bekommen, dass sich Settings geändert haben und neu geladen werden müssen. Hat der Software-Architekt damit gerechnet, dass sich solche Daten außerhalb ändern können, hat er möglicherweise auch einen automatischen Refresh eingebaut. Zu beachten ist nämlich, dass sehr häufige Zugriffe auf meist statische Settings-Daten durchaus die Performance beeinträchtigen können, wenn jedesmal ein Datenbankzugriff oder z.B. eine XML-Deserialisierung notwendig ist. Ein Caching von Settings für ein paar Minuten ist also oft eine gute Idee.

Sie sehen natürlich auf den ersten Blick, dass der neue Code nicht nur ein Vielfaches kürzer ist als das alte Switch-Konstrukt. Er ist außerdem sofort zu verstehen und damit sehr gut wartbar. Auch die Fehleranfälligkeit ist geringer, weil eine versehentliche Veränderung in einem String-Literal oder einer der “magic numbers” im Eingangsbeispiel hier nicht passieren kann (der Compiler würde es wohlgemerkt nicht merken).

Daten sind Daten, aber wie?

Wenn Sie vor der Entscheidung stehen, wie und wo Sie Konfigurationsdaten ablegen, gibt es weder eine Patentlösung noch allgemeingültige Empfehlungen.

So möchten Sie User/Rollen-Konfigurationen einer auf Kunden-PCs laufenden Anwendung sicher verschlüsseln oder zumindest digital signieren, damit sich niemand auf einfache Weise zusätzliche Rechte verschaffen kann. Das ist natürlich mit Standard-Bibliotheken ohne weiteres möglich und ändert nichts am Grundprinzip der sauberen Trennung von Daten und Code.

Auf Dateiebene kommen ini- oder properties-Dateien in Frage, für komplexere Daten (wie Maps/Dictionaries wie im obigen Beispiel) XML- oder Json-Format. Beachten Sie, dass es für so ziemlich jede Programmiersprache, die etwas auf sich hält, Bibliotheken gibt, die Ihnen solche Dateien in Objekte deserialisieren (z.B. GSON oder Jackson für Java). So können Sie eine bestimmte Datenstruktur erzwingen, brauchen keine tippfehleranfälligen Stringliterale für den Zugriff, und strukturell falsche Daten führen zu Ausnahmefehlern, die (ordentliche Fehlerbehandlung vorausgesetzt) sofort sichtbar werden.

Auf Nummer sicher gehen Sie mit einer Datenbank, in der das relationale Schema die Datenstruktur fest vorgibt. Das muss natürlich kein ausgewachsener SQL-Server sein – auch dateibasierte Datenbanken wie Apache Derby oder SQLite erfüllen ihren Zweck. Das obige Beispiel würde eine Tabelle mit zwei Spalten (userrole und mgrNr) erfordern, wobei die userrole gleichzeitig der unique primary key wäre und die get-Funktion letztlich eine SQL-Query ausführt:

 SELECT mgrNr FROM settings WHERE userrole=:?

Diese oder jene Daten

Daten in Ressource-Dateien abzulegen (auch dateibasierte Datenbanken sind letztlich welche), eröffnet Ihnen mit modernen Build-Systemen wie Maven weitere Möglichkeiten. So können Sie mit Maven-Profiles das Buildsystem anweisen, unterschiedliche Ressourcen-Verzeichnisse zu verwenden. Auf diese Weise können Sie Testversionen getrennt von Produktivversionen verwalten oder auch unterschiedliche Ausprägungen eines Produkts bauen. In Mavens pom.xml schreiben Sie einfach:

<profiles>
    <profile><id>dev</id></profile>
    <profile><id>live</id></profile>
    ...
</profiles>

Sie übergeben dem mvn-Kommando mit dem Parameter -P den Namen des gewünschten Profils. Dann verwendet Maven zusätzlich zum Standard-Verzeichnis für Ressourcen (resources) ein Verzeichnis namens resources-[profile]. Legen Sie also einfach die jeweiligen Dateiversionen in unterschiedliche resources-xxx-Verzeichnisse und bauen Sie die Anwendung mit dem passenden -P-Parameter.

Wenn Sie das Springframework verwenden, können Sie mit passenden Annotations dafür sorgen, dass Konfigurationsparameter direkt zu Java-Beans verarbeitet werden, die per Autowire im Inversion-of-Control-Container zur Verfügung stehen. Aber das ist ein Thema für einen anderen Artikel.

Mögen Ihre Daten immer Daten sein, auf dass keines Ihrer Dates ausfallen muss!

Coden, aber effizient!

Wir leben im digitalen Zeitalter (na gut, die meisten von uns), und langsam aber sicher wird vielen Entscheidern klar, dass die AWS-Cloud (oder ihre Verwandten) nicht nur total praktisch ist, sondern auch eine ganze Menge Energie verbraucht. Schätzungen sprechen von bis zu 20% des Energieverbrauchs der ganzen Welt. Wohlgemerkt sind Anwendungen in der Cloud immer noch sparsamer als eigene Rechenzentren mit Servern aus Blech, die 24 Stunden an der Steckdose nuckeln, aber beispielsweise nur tagsüber benötigt werden. Cloud-Instanzen sind üblicherweise “shared” und verbrauchen nur dann Energie, wenn benötigt. Trotzdem bedeuten mehr Cloud-Instanzen natürlich auch mehr Energieverbrauch (und CO2-Ausstoß, sofern das Rechenzentrum keinen grünen Stromanschluss besitzt).

Tatsächlich können wir die Frage nach dem Energieverbrauch auch Codern und Software-Architekten stellen: Benötigt euer Software-System wirklich 10 Instanzen und 3 Datenbanken? Muss für eine eher simple Anwendung 1 GB RAM reserviert werden und die Kiste mit dem fettesten Prozessor oder darf es ein bisschen weniger sein? Sollte der Energieverbrauch einer Plattform vielleicht sogar zu den Entscheidungskriterien gehören?

Der Vergleich

Für die 2. Auflage meines Buchs “Besser coden” habe ich ein Kapitel über effizienten Code geschrieben – und ein paar Messungen durchgeführt. Dazu habe ich eine relativ einfache Webanwendung in mehreren Sprachen geschrieben und Aspekte wie Performance, Ressourcenverbrauch und Anspruch an Entwickler verglichen. Letzteres ist nicht zu unterschätzen: Spart eine Technologie Speicher, aber Sie finden keinen Entwickler, der sie beherrscht, bleibt ihr tolles Softwaresystem graue Theorie.

Es traten an:

  • Java 13 und Spring Boot, das beliebte Framework für Webservices
  • PHP 7.4, eine bewährte, einfache Skriptsprache mit Cache APCu
  • Rust 1.52 und Actix Web, eine ziemlich neue Sprache samt passendem Webservice-Framework
  • sowie quasi als Online-Bonus (nicht im Buch) Go.

Der Webservice besitzt nur einen einzigen Endpoint, der dafür gedacht ist, ein Wort gegen eine hinterlegte Liste zu prüfen. Eine solche Funktion ist beispielsweise in einem Scrabble-Spiel nötig: Ist das gelegte Wort erlaubt oder nicht? Das Ergebnis wird dabei als JSON-Antwort formuliert.

Die Liste ist absichtlich nicht in einem ausgewachsenen Datenbanksystem hinterlegt, denn ich möchte nicht die Effizienz unterschiedlicher RDBMS bewerten, sondern die von Software-Plattformen. Daher lädt die zu schreibende Anwendung die Wortliste beim Start aus Textdateien und hält sie dann im RAM. Im Test enthielt diese Liste knapp 180.000 Einträge. Im Fall von PHP erfordert eine solche Vorgehensweise zwingend den Einsatz eines Caches (hier verwendet: APCu), um die Dateien nicht bei jedem Aufruf des Skripts erneut laden zu müssen.

Die Rechenzeit habe ich mit dem Apache Benchmark ab gemessen, einmal einen Einzelrequest und einmal 10.000 auf einmal in sechs parallelen Threads, um die Leistung im Parallel Processing zu bestimmen.

Den Code finden Sie in Grundzügen in meinem Buch (bis auf die Go-Version). Hier fasse ich Ihnen nur die Ergebnisse zusammen:

Java/Spring BootPHP/APCuRust/ActixGo
RAM-Verbrauch50 MB200 MB0,9 MB24 MB
Anwendungsgröße19 MB (JAR)372 Bytes (Skript)8,4 MB (binär)7,1 MB (binär)
Zeit 1 Aufruf1,8 ms0,9 ms0,4 ms0,5 ms
Zeit 10.000 Aufrufe1,1 s0,6 s0,5 s0,5 s
Startup-Dauer2,5 snicht messbar53 ms75 ms
Buildtime7,4 sentfällt69 s1 s
Coding-Anspruchleichtsehr leichtschwierigmittel

Sie sehen, dass das rein binäre Rust-Programm zur Laufzeit am schnellsten und genügsamsten ist – aber finden Sie mal einen Rust-Entwickler auf dem Jobmarkt oder lernen Sie die Sprache “mal eben”! Ich hab letzteres versucht und brauchte mehrere Packungen Schokokekse, um die spezielle Speicherverwaltung zu kapieren. Die lange Buildtime ist dabei dem anspruchsvollen Compiler- und Linker-Vorgang geschuldet.

Abgesehen vom RAM-Verbrauch ist PHP unter dem Strich wohl die effizienteste Lösung. Aber viele Entwickler scheuen sich davor, größere Projekte in PHP anzulegen – die fehlende starke Typisierung und die immer über uns Entwicklern schwebende Versuchung, spaghettimäßig PHP- und HTML-Code zu mixen, sowie ein paar Fallen wie vergessenes $this->, sind klare Minuspunkte. Dafür ist die Turnaround-Zeit Null: Skript nur speichern, schon ist es bereit zum Aufruf per HTTP.

Java ist nicht ohne Grund sehr beliebt. Aber die Java-Runtime, so optimiert sie mittlerweile auch ist, geht alles andere als sparsam mit Ressourcen um und ist merklich langsamer als die Binärcode-Konkurrenz (auch PHP verwendet dank Zend-Engine letztlich Binärcode). Ein Maven-Buildprozess lädt gefühlt mehrmals täglich das halbe Internet runter. Dafür ist der Code (speziell mit Spring Boot) aufgeräumt und vergleichsweise leicht zu debuggen. Große Projekte mit komplexer Geschäftslogik sind in Java wohl vergleichsweise am lesbarsten abzubilden.

Fazit

Sie sehen: Es gibt keine Lösung, die gleichzeitig einfach und technisch effizient ist. Sie müssen immer abwägen: Lohnt es sich, in eine hocheffiziente, moderne Technik wie Rust oder Go zu investieren? Oder setzen Sie auf eine bewährte und
einfache Technik wie Java und nehmen in Kauf, dass Sie mehr
Server benötigen (und Energie verbrauchen), wenn mehr Rechenpower erforderlich ist? Gerade bei neuen Projekten ist es sicher eine gute Idee, über diese Fragen zu diskutieren. Denn später können Sie die Plattform nicht mehr einfach ändern.

So bleiben vermutlich noch auf Jahre oder Jahrzehnte Java-Webservices
und PHP-Skripte state of the art – obwohl mit Rust oder Go, C++20, D …
technisch hochmoderne und extrem effiziente Konkurrenzprodukte be-
reitstehen.

Mein Dank für die Mitarbeit geht an Marcus Schlechter.

Wie Spaghetti ist PHP?

Wer kennt sie nicht, die Sprache von WordPress? Laut Statistiken laufen um die 30% aller Webseiten (auch diese) auf WordPress – und damit mit der 25 Jahre alten Skriptsprache PHP (freilich vermixt mit einer gehörigen Portion HTML, Javascript und CSS). Also nicht Java, nicht C# … sondern PHP. Insgesamt kommt PHP sogar auf einen Anteil von 79% aller Webseiten, deren verwendete Plattform bekannt ist, behauptet W3Techs.

PHP – eine Sprache, die Spaghetticode geradezu herbeisehnt, denn damit können sogar Anfänger innerhalb von Sekunden dynamische Webseiten schreiben, mit Datenbank-Anbindung, Formular-Sanitychecks und haufenweise Sicherheitslücken.

Nun ja, die Situation hat sich gebessert, seit URL-Parameter nicht mehr automatisch als Variablen wie $param zur Verfügung stehen – trotzdem verleitet die Natur der Sprache zur Beimischung von HTML wie hier:

foreach($angebote as $angebot) { print "<div>$angebot</div>";}

Ups, heute leider keine Angebote:

Na ja. Kann ja mal passieren.

Hinweisen wollte ich hier eigentlich nicht auf schlechte Fehlerbehandlung, sondern auf etwas anderes: HTML-Code in String-Literalen ist aus Sicht der Entwicklungsumgebung meist irgendein Text. Folglich findet darin keine Validierung statt. Ein versehentlicher, unbemerkter Tastendruck innerhalb des Strings kann die Darstellung der Webseite komplett zerschießen, ohne dass Sie, Ihre Entwicklungsumgebung oder PHP es bemerken (klar gibt es Unit-Tests für PHP, aber ich fürchte, allzu verbreitet sind die nicht). Dass man dergleichen mit einer Template-Engine umgehen kann, die HTML- und PHP-Code in getrennten Dateien verwaltet, dürfte den meisten Lesern klar sein – aber das ist natürlich viel umständlicher und nicht so schnell fertig.

Mit strukturierter (also aufwändigerer, zukunftssicherer) Programmierung ernten Sie als Früchte eine ganze Reihe Vorteile von PHP:

  • Minimaler Footprint auf dem Server (ein paar Textdateien, nicht megabyteweise Java-Libs)
  • Hohe Performance (dank Codecache und bei schlauer Programmierung, siehe dazu weiter unten)
  • Turnaround-Zeit ist 0 (Zeit zwischen Speichern einer PHP-Datei und HTTP-Aufruf gegen localhost zum Testen)
  • Und nicht zu vergessen: Hohe Verbreitung in der Community, also ist es leicht, Unterstützung zu finden.

Fairerweise seien ein paar Nachteile genannt:

  • Vergleichsweise hoher RAM-Bedarf
  • Keine strenge Typisierung
  • Objektorientierte Programmierung leicht nervig (ich vergesse dauernd das $this->, Sie auch?)
  • Verleitet zu unsauberer Programmierung durch globale Variablen, prozedurales Coden und verschachtelte includes
  • Größere Updates erforderten in der Vergangenheit größere Umbauten (z.B. MySQL-Funktionen), so dass viele Webseiten nie upgedated wurden, weil der Aufwand nicht lohnt → eine solche radikale Update-Policy führt dazu, dass viele Nutzer ihre Systeme nicht updaten und damit Sicherheitslücken bestehen bleiben

Zur oben erwähnten “schlauen Programmierung” ein kleiner Info-Drops: Im Gegensatz zu einer Java-Anwendung, die einmal hochfahren muss, ist ein PHP-Skript zunächst einmal “stateless”, es kennt also keine globalen Daten bzw. muss sich alles selbst zusammensuchen, was es braucht. “Weniger schlaue” Programmierung würde hier bedeuten, etwaige benötigte Daten beim Start des Skripts aus Dateien oder Datenbank nachzuladen. Bei jedem Start des Skripts. Das ist natürlich ineffizient. Stattdessen können Sie den In-Memory-Cache APCU verwenden, der wie ein Key-Value-Store im RAM funktioniert und daher extrem performant ist und im Gegensatz zum ebenfalls bewährten Memcached keine externe Komponente benötigt. Wir versuchen also mal im folgenden Beispiel beim Start des Skripts, einen benötigten Wert ($words) aus dem Cache zu holen. Sollte er fehlen (also beim allerersten Start), laden wir ihn aus irgendwelchen Dateien und speichern ihn im Cache:

if(apcu_exists("words")) { 
  $words=apcu_fetch("words");
} else { 
  $words = load_words_from_file("irgendwelche_woerter.txt");
  apcu_add("words",$words);
}
// es folgt der Code, der $words benötigt

Der Performancegewinn ist erheblich, wovon Sie sich leicht selbst überzeugen können, wenn Sie Test-Requests auf ein solches Beispiel loslassen. Um auch mal mehrere Requests auf einmal abzufeuern, können Sie übrigens den Apache Benchmark ab verwenden, etwa so:

ab -c 6 -n 10000 http://localhost/test.php?input=Hurra

Mit den gezeigten Parametern führt ab 10.000 Requests gegen die übergebene Adresse aus, und zwar in 6 parallelen Threads (seien Sie fair und überlassen Sie PHP/Apache auch ein paar, meine Maschine hat 12 Kerne, daher Fifty-Fifty). Das Tool gibt dann eine ausführliche Statistik über die Performancemessung aus:

Concurrency Level: 6
Time taken for tests: 0.629 seconds
Complete requests: 10000
Failed requests: 0
Non-2xx responses: 10000
Total transferred: 1850000 bytes
HTML transferred: 0 bytes
Requests per second: 15901.99 #/sec
Time per request: 0.377 ms
Time per request: 0.063 [ms] (mean, across all concurrent requests)
Transfer rate: 2872.92 [Kbytes/sec] received

Sie sehen: Ja, auch in PHP kann man strukturiert, effizient und sauber programmieren – aber PHP zwingt Sie nicht zu Disziplin, das müssen Sie schon selber tun. Empfehlenswert sind daher z.B. im Team knackige Code-Reviews und zielführende Mikroarchitektur-Debatten, um für porentief reinen Programmierstil zu sorgen.

tl;dr: PHP ist schnell und effizient, aber passen Sie auf, dass Sie keinen Spaghettisalat produzieren.

In eigener Sache: Android-Sample-Code-Neuzugänge

Liebe Freunde von “Android-Apps entwickeln mit Java”!

Fans spaßiger App-Bastelei!

Hurra!

Ich habe mein github-Repository um einen Haufen Beispielcode erweitert. Es handelt sich dabei durchweg um Android-Apps, die ein oder mehrere Best Practices in der Android-Entwicklung mit Java zeigen. “Best Practice” heißt natürlich: Was ich für empfehlenswert halte, die Geschmäcker sind halt verschieden. Teilnehmer meiner Trainings kennen diesen Code schon, weil ich ihnen den ausführlich erklärt habe. Jetzt können Sie nochmal draufschauen – oder sich was kopieren, ist ja alles Open Source!

Mit dabei sind Samples zu Themen wie Fragments und Master-Detail-Flow, aber auch die guten alten DialogDemos, die auch das Buch erklärt. Brandneu ist eine Demo der neuen (aktuell noch in Alpha-Version erhältlichen) CameraX-API von Jetpack. Diese wird wahrscheinlich durch irgendwelche API-Änderungen ziemlich schnell obsolet; ich kann noch nicht versprechen, ob oder wann ich sie aktualisiere.

Ebenfalls bekannt aus meinem Buch ist der Kompass, der die Nutzung des Magnetometers und einen selbst gezeichneten View demonstriert. Ferner gibt es einen MiniMiniEditor, der das Speichern von Dokumenten mit dem StorageAccessFramework zeigt. Und last but not least die 9352. Wetterfrosch-App, die die schlechteste UI aller Zeiten aber dafür auch die lehrreichste Retrofit-Implementierung der letzten 23 Minuten mitbringt. Übrigens: Für nächste Woche sind 16 Grad angesagt! Hier, schauen Sie:

Diese App ist tatsächlich sinnvoll nutzbar – also, falls Sie noch keine Lieblings-Wetterfrosch-App installiert haben, nehmen Sie doch diese!

Viel Spaß mit dem Code. Beachten Sie bitte, dass bei Erscheinen einer neuen Gradle- oder Android-SDK-Tools-Version ggf. Aktualisierungen in der build.gradle vorzunehmen werden, da ich es absehbar nicht schaffe, alle Repositories aktuell zu halten.

Entkopplung mit Events

Ein Ausweg aus der Multithread-Hölle (Sie wissen schon, die mit dem fröhlichen Bad in siedenden Race conditions) ist die Entkopplung mit Events. Statt einen linearen Programmablauf zu denken, der streckenweise aus wichtigen Gründen in verschiedenen Threads abläuft, denken Sie lieber an herumgereichte Events oder, allgemeiner: Nachrichten. Ein Message-Broker läuft dazu im Hintergrund und reicht Nachrichten herum. Das entspricht einem Publish-Subscribe-Entwurfsmuster. Der entscheidende Vorteil: Die Nachricht “gehört” immer nur jenem Programmteil (oder Thread), der gerade aktiv ist. Es gibt keinen gleichzeitigen Zugriff mehrerer Threads auf das gleiche Nachrichtenobjekt. Auch der Message-Broker interessiert sich nicht mehr für eine Nachricht, sobald er sie zugestellt hat. Am Ende der Verarbeitung wird einfach eine neue Nachricht mit dem Ergebnis der Berechnung auf gleiche Weise zurück geschickt.

Publish und Subscribe

Sie wissen sicher: Viele größere Software-Systeme arbeiten längst mit Microservices und Message-Brokern wie Apache Kafka, die Nachrichten herumreichen. Aber das geht auch in Android, und Sie können damit leicht und elegant Arbeit in den Hintergrund verlagern. Statt mit AsyncTask, Thread, Handler und runOnUiThread können Sie einfach EventBus verwenden – tun Sie vielleicht eh, denn die Library hat sich in unzähligen Apps bewährt:

dependencies {
implementation 'org.greenrobot:eventbus:3.2.0'
}

Meist verwenden Sie EventBus, um Nachrichten zwischen UI-Komponenten, Fragmenten und Activities oder Services auszutauschen. Aber da Sie per Annotation festlegen können, ob ein EventHandler im Vorder- oder Hintergrund aufgerufen wird, können Sie auch sehr einfach eine saubere Background-Task-Verarbeitung umsetzen:

EB ist eine Abkürzung für EventBus.getDefault()

Links, im Main Thread, schicken Sie (z.B. nach einem Knopfdruck des Nutzers) eine CalculationStartMsg los, nix weiter. Die Message ist ein POJO, das alle nötigen Daten enthält, um die gewünschte Berechnung zu starten. Diese Nachricht (oberer Kaffeefleck) stellt EventBus im Hintergrund zu (siehe @Subscribe-Annotation). Wohlgemerkt ist der UI-Thread völlig unbeteiligt, er macht nach dem EB.post() gar nichts mehr bzw. wartet auf weitere Eingaben.

Die Berechnung im Hintergrund erzeugt eine neue Nachricht mit dem Ergebnis der Berechnung, ResultMsg (unterer Kaffeefleck), und überstellt es dem EventBus. Dieser stellt es der passenden onMessageEvent-Funktion im Main-Thread zur Verfügung, die wiederum das Ergebnis in der UI darstellt.

Async im Pool

Falls Sie oft längere Berechnungen im Hintergrund durchführen, verwenden Sie statt ThreadMode.BACKGROUND lieber ThreadMode.ASYNC. Denn während erstere Variante nur einen Thread verwendet, und mehrere Operationen daher nacheinander verarbeiten muss, benutzt ASYNC einen ThreadPool und kann daher problemlos mehrfach und für länger dauernde Berechnungen (wie Netzwerkzugriff) eingesetzt werden.

Beachten Sie immer den Android-Lifecycle: Beide Klassen (die blaue und die orange) müssen bereits instanziiert sein, sonst können sie keine Events empfangen (). Entweder die Worker-Klasse wird in onCreate der Activity (blau) erzeugt, oder alle Funktionen liegen sogar in der gleichen Activity-Klasse. EventBus kann im Gegensatz zu (expliziten) Broadcasts keine neuen Objekte erzeugen. Natürlich müssen alle beteiligten Klassen sich bei EventBus registrieren (mit EventBus.getDefault().register(this)).

In den Messages können Sie beliebige serialisierbare Daten übertragen, auch größere Mengen. Die Latenz beträgt wenige Millisekunden.

tl;dr: EventBus-ähnliche Architektur löst auf elegante Weise viele Multithreading-Probleme, da sie auf gleichzeitige Zugriffe auf ein und dieselben Ressourcen prinzipiell verzichtet. Das bedeutet maximale Entkopplung, weniger Abhängigkeiten und weniger Probleme. Mit ganz einfachen Mitteln. Investieren Sie Ihre wertvolle Zeit lieber in wichtigere Dinge, zum Beispiel Vermeiden von Sicherheitslücken…

Voller als voll

Wenn der Speicher voll ist, wirft Java bekanntlich einen OutOfMemoryError:

Oha.

Tatsächlich kann der Speicher sogar so knapp werden, dass er nicht einmal genügt, um ein Objekte der Klasse OutOfMemoryError zu erzeugen …

Wer genau hinschaut, kann sehen, dass der Fehler von com.android.vending geworfen wurde, also dem Play Store auf einem Android-Smartphone. Einem virtuellen allerdings, denn das Ganze ist beim Vorveröffentlichungs-Test einer App passiert.

Exkurs

Kleiner Exkurs über Speicher unter Java?

Nein … nur ein klitzekleiner, das Thema ist so groß, dass es gerade nicht in meinen Arbeitsspeicher passt.

Beim Start müssen wir der virtuellen Maschine von Java einen gewissen Spielraum einräumen – Speicher, der dann dem Programm zur Verfügung steht, sei es für Bytecode oder Objekte (es ist wirklich kompliziert). Der Garbage Collector ist ja einer der Hauptgründe, Java zu verwenden, weil er die Entwicklung so schön einfach macht. Programmierer müssen sich keine Gedanken darüber machen, wann sie ihre erzeugten Objekte wieder wegschmeißen müssen. Der Preis ist natürlich, dass der Garbage Collector Rechenzeit verbraucht – und das kann beim Verzicht auf Optimierungen durchaus merkliche Auswirkungen haben.

Zu viel Dingsbums

Beispiel Spiele: Normalerweise besitzen Spiele einen Renderer, der 30 mal pro Sekunde (oder öfter) den Bildschirm neu zeichnet. Da normalerweise bewegliche Dingsbums mit von der Partie sind, müssen Berechnungen stattfinden. Zum Beispiel sind Vektoren zu addieren, etwa so:

Vector3 newLocation = new Vector3(move(dingsbums,oldLocation,timePassed));
drawAt(dingsbums,newLocation);

Die erste Zeile erzeugt ein neues Objekt (newLocation) auf dem Heap. Am Ende der Zeichenfunktion ist es überflüssig, d.h. der Garbage Collector wird es irgendwann wegräumen. Jetzt stellen Sie sich vor, dass deutlich mehr als ein Dingsbums auf dem Bildschirm ist. Alle müssen sich bewegen, für jedes entsteht ein neues Vector3-Objekt, und das 30 mal pro Sekunde. Sie können sich leicht ausrechnen, wie viele Objekte der Garbage Collector letztlich aufzuräumen hat. Schlimmstenfalls macht sich das als Ruckeln bemerkbar, auf jeden Fall verbraucht es Prozessorzeit und damit Energie (also Akkuladung).

Besser ist es also, Objekte wiederzuverwenden. Dingsbums sollte über einen permanenten Vector3 verfügen, nur dessen Koordinaten (vielleicht native floats) ändern sich noch:

move(dingsbums,timePassed);
drawAt(dingsbums.getLocation());

Profilieren

Sie können mit Android Studio im Profiler genauso wie mit Java-Tools wie jmx die Aktivität des Garbage Collectors verfolgen. Ein guter Hinweis ist ein zackiger Sägezahnverlauf der Speicherbelegung. Wird der GC sehr oft aktiv, deutet das auf Optimierungspotenzial hin. Der Profiler zeigt dann an, in welchem initializer besonders viel Zeit draufgeht – damit wissen Sie, welche Objekte womöglich zu oft erzeugt werden.

Bekanntlich beträgt der Anteil der CO2-Ausstoßes der IT weltweit mit ihren ganzen Rechenzentren geschätzt 10-20%. Je effizienter Ihre Anwendung arbeitet, umso weniger ist sie daran schuld. Klingt vielleicht banal, aber nicht wenn Ihre App auf Milliarden Smartphones installiert ist und milliardenfach verwendet wird (und das wollen Sie doch, oder?).

Mehr zum Thema Speicherverbrauch und Effizienz in naher Zukunft und in der nächsten Auflage meines Buchs “Besser coden”.

Schriftarten in Android

Jeder, der schonmal eine Urkunde für seinen Zimmeraufräum-Weltmeister (6-jähriger Sohn) designt hat, weiß, dass man da mit Times New Roman und Arial keine Begeisterung auslöst. Auf 1001freefonts.com gibt es deutlich mehr als 1001 Schriftarten – aber wie kriegt man die in seine App?

Wer schonmal im Layout-Editor in Android Studio etwas herumprobiert hat, wird zumindest auf das hier gestoßen sein:

So weit, so langweilig – mehr als diese vier einfachen Varianten lassen sich hier nicht auswählen. Sie können nicht einfach einen Truetype-Font in irgendein Verzeichnis legen und dessen Namen hier hinschreiben. Wie geht’s also sonst?

Tatsächlich gibt es eine klassische Methode und eine neuere, die ich Ihnen hier kurz zeige.

Typefaces aus Assets

Die klassische Methode klappt nicht ohne Code. Dazu legen Sie zunächst die gewünschte Schriftart im TTF-Format ins Verzeichnis assets/fonts. Damit sorgen Sie dafür, dass die Schrift in Ihr APK eingebaut wird. (Der Verzeichnisname fonts ist willkürlich, Sie können ihn auch irgendwie nennen.)

An dieser Stelle eine freundlich gemeinte Warnung: Es sieht nicht nur unprofessionell aus, wenn Sie auf einem Bildschirm 10 verschiedene Schnörkelschriften verwenden – es kostet auch Speicher und Rechenzeit. Achten Sie darauf, nicht zu viele und nicht zu komplexe Schriften zu verwenden. Letzteres erkennen Sie an der Größe der TTF-Datei.

Und noch eine Warnung: Viele im Netz auffindbare Schriften verfügen nicht über deutsche Umlaute. Und die wenigsten bieten Unterstützung auch für ausgefallene Zeichen. Wenn Sie ohnehin keine fremden Schriftsysteme oder Sprachen unterstützen wollen, können Sie das getrost ignorieren – bedenken Sie aber, dass ein griechischer Nutzer Ihres Spiels beim Eingeben seines Namens für Ihre Online-Highscore-Liste möglicherweise griechische Zeichen verwenden möchte. Wenn Sie dem zugehörigen EditText eine Schriftart ohne griechische Buchstaben zugewiesen haben, sieht der Nutzer bloß kleine Rechtecke.

Genug Warnungen, kommen wir zum Programmcode.

Die Schriftart eines TextViews (oder einer Ableitung davon, wie Button) setzen Sie wie folgt:

textView.setTypeface(typeface);

Das zugehörige Typeface-Objekt erzeugen Sie mit einer einfachen Create-Funktion:

Typeface typeface=Typeface.createFromAsset(am, path);

Dabei ist am der AssetManager Ihres Contexts, den Sie innerhalb einer Activity mit getAssets() erhalten.

Als Pfad path übergeben Sie den Dateinamen Ihrer Schriftart relativ zum Verzeichnis assets.

Schriften per FontFamily

Die moderne Variante funktioniert ohne Code. Font-Definitionen per XML wurde in Android 8 eingeführt und funktioniert dank Rückwärtskompatibilität per AndroidX bis hinunter zu Android 4.1 (API 16), was für ungefähr 99% der verwendeten Geräte auf der Welt genügt.

Nunmehr gehören Ihre Schriftartdateien ins Verzeichnis res/font.

Diese referenzieren Sie einfach im TextView-Attribut fontFamily:

Es lassen sich außerdem FontFamilies definieren, so dass für fette oder kursive Schrift automatisch die passende Schriftartdatei zum Einsatz kommt. Mehr zu Fonts erfahren Sie in der offiziellen Dokumentation:

https://developer.android.com/guide/topics/ui/look-and-feel/fonts-in-xml