Entkopplung mit Events

Ein Ausweg aus der Multithread-Hölle (Sie wissen schon, die mit dem fröhlichen Bad in siedenden Race conditions) ist die Entkopplung mit Events. Statt einen linearen Programmablauf zu denken, der streckenweise aus wichtigen Gründen in verschiedenen Threads abläuft, denken Sie lieber an herumgereichte Events oder, allgemeiner: Nachrichten. Ein Message-Broker läuft dazu im Hintergrund und reicht Nachrichten herum. Das entspricht einem Publish-Subscribe-Entwurfsmuster. Der entscheidende Vorteil: Die Nachricht “gehört” immer nur jenem Programmteil (oder Thread), der gerade aktiv ist. Es gibt keinen gleichzeitigen Zugriff mehrerer Threads auf das gleiche Nachrichtenobjekt. Auch der Message-Broker interessiert sich nicht mehr für eine Nachricht, sobald er sie zugestellt hat. Am Ende der Verarbeitung wird einfach eine neue Nachricht mit dem Ergebnis der Berechnung auf gleiche Weise zurück geschickt.

Publish und Subscribe

Sie wissen sicher: Viele größere Software-Systeme arbeiten längst mit Microservices und Message-Brokern wie Apache Kafka, die Nachrichten herumreichen. Aber das geht auch in Android, und Sie können damit leicht und elegant Arbeit in den Hintergrund verlagern. Statt mit AsyncTask, Thread, Handler und runOnUiThread können Sie einfach EventBus verwenden – tun Sie vielleicht eh, denn die Library hat sich in unzähligen Apps bewährt:

dependencies {
implementation 'org.greenrobot:eventbus:3.2.0'
}

Meist verwenden Sie EventBus, um Nachrichten zwischen UI-Komponenten, Fragmenten und Activities oder Services auszutauschen. Aber da Sie per Annotation festlegen können, ob ein EventHandler im Vorder- oder Hintergrund aufgerufen wird, können Sie auch sehr einfach eine saubere Background-Task-Verarbeitung umsetzen:

EB ist eine Abkürzung für EventBus.getDefault()

Links, im Main Thread, schicken Sie (z.B. nach einem Knopfdruck des Nutzers) eine CalculationStartMsg los, nix weiter. Die Message ist ein POJO, das alle nötigen Daten enthält, um die gewünschte Berechnung zu starten. Diese Nachricht (oberer Kaffeefleck) stellt EventBus im Hintergrund zu (siehe @Subscribe-Annotation). Wohlgemerkt ist der UI-Thread völlig unbeteiligt, er macht nach dem EB.post() gar nichts mehr bzw. wartet auf weitere Eingaben.

Die Berechnung im Hintergrund erzeugt eine neue Nachricht mit dem Ergebnis der Berechnung, ResultMsg (unterer Kaffeefleck), und überstellt es dem EventBus. Dieser stellt es der passenden onMessageEvent-Funktion im Main-Thread zur Verfügung, die wiederum das Ergebnis in der UI darstellt.

Async im Pool

Falls Sie oft längere Berechnungen im Hintergrund durchführen, verwenden Sie statt ThreadMode.BACKGROUND lieber ThreadMode.ASYNC. Denn während erstere Variante nur einen Thread verwendet, und mehrere Operationen daher nacheinander verarbeiten muss, benutzt ASYNC einen ThreadPool und kann daher problemlos mehrfach und für länger dauernde Berechnungen (wie Netzwerkzugriff) eingesetzt werden.

Beachten Sie immer den Android-Lifecycle: Beide Klassen (die blaue und die orange) müssen bereits instanziiert sein, sonst können sie keine Events empfangen (). Entweder die Worker-Klasse wird in onCreate der Activity (blau) erzeugt, oder alle Funktionen liegen sogar in der gleichen Activity-Klasse. EventBus kann im Gegensatz zu (expliziten) Broadcasts keine neuen Objekte erzeugen. Natürlich müssen alle beteiligten Klassen sich bei EventBus registrieren (mit EventBus.getDefault().register(this)).

In den Messages können Sie beliebige serialisierbare Daten übertragen, auch größere Mengen. Die Latenz beträgt wenige Millisekunden.

tl;dr: EventBus-ähnliche Architektur löst auf elegante Weise viele Multithreading-Probleme, da sie auf gleichzeitige Zugriffe auf ein und dieselben Ressourcen prinzipiell verzichtet. Das bedeutet maximale Entkopplung, weniger Abhängigkeiten und weniger Probleme. Mit ganz einfachen Mitteln. Investieren Sie Ihre wertvolle Zeit lieber in wichtigere Dinge, zum Beispiel Vermeiden von Sicherheitslücken…

EHCache mit Ballast

Auf manche Umstände stößt man ja eher zufällig, zum Beispiel wenn man die Festplatte aufräumt und dabei den vermissten Schlüssel für die Börse mit den zwei oder drei vor 20 Jahren vergessenen Bitcoins wiederfindet.

Nein, hier geht es nicht um Geld, sondern um Energieverschwendung. Mal wieder. Leider. Sorry.

Bei der Modernisierung einer etwas in die Jahre gekommenen Java-Anwendung war es erforderlich, die uralte Version 1.1 von ehcache durch eine aktuelle zu ersetzen. Da ehcache 3.x komplett inkompatible Konfigurationsdateien verwendet, greift der faule Entwickler zur letzten stabilen 2er-Version, nämlich 2.10.6.

Das funktioniert prima, die API ist dieselbe wie anno dazumal in der 1.1. Alles gut, bis ich mich fragte, wieso denn meine Webanwendung neuerdings über 22 MB groß ist.

Ein Blick ins WAR verrät den Übeltäter sofort: ehcache-2.10.6.jar mit über 10 MB macht fast die Hälfte meiner Anwendungsgröße aus!

ehcache-1.1.jar bringt im Vergleich läppische 47,5 kB auf die Waage.

Eine Vergrrrrrööööößerung also um einen Faktor 200. Ungefähr.

Wasnulos?

Zum Glück haben wir es mit Open Source zu tun und können mal nachschauen, ob der Anbieter vielleicht versehentlich ein Promotion-Video eingebaut hat:

Was ist denn das?!? Braucht das jemand!?!? Kann das weg?!?

Nein, kein Promo-Video, sondern ein Paket namens rest-management-private-classpath, in dem sich anscheinend nicht ein, sondern gleich zwei embedded Application Server befinden, nämlich ein Glassfish und ein Jetty.

Freilich weiß der Experte, dass mit ehcache-server ein Ehcache-Produkt für verteiltes Caching mit toller REST-API zur Verfügung steht, aber was hat das in dieser Library zu suchen? (Wenn es das ist, ich rate hier ein bisschen)

Klarer Fall: Grob geschätzt 99% der Anwendungen, die ehcache 2 nutzen, benötigen diese eingebauten Application Server überhaupt nicht (weil sie eigene mitbringen oder in standalone-Server deployed werden). Dass die eingebauten Server kaum jemals verwendet (oder auch nur bemerkt) werden, zeigt auch eine Suche auf stackoverflow, die für “rest-management-private-classpath” gerade mal 42 (kein Witz) Resultate auswirft, für “ehcache” jedoch 8461.

Effizienz sieht anders aus

Wer schonmal was von einer neumodischen Erfindung namens “Modularität” gehört hat, und etwas mit dem komplizierten Fremdwort “Effizienz” anfangen kann, kommt ziemlich schnell drauf, dass man weniger häufig benötigte, optionale Komponenten total cool in eigene Bibliotheken auslagern kann, um die Kernfunktionalität besonders schlank zu halten.

Durch den unnötigen Ballast laden Buildsysteme also mit ehcache 2.x andauernd ca. 8 MB (ungefähre komprimierte Größe des Ballasts) mehr Daten runter oder rauf als nötig und verschwenden so Bandbreite und Speicherplatz. Das klingt nach wenig – aber Ehcache ist nach eigener Aussage “Java’s most widely used cache”, und die Anzahl der Anwendungen, die die aufgeblähte Version verwenden, dürfte von erheblicher Größe sein, entsprechend hoch die Anzahl der Buildvorgänge, bei denen die Datei (mindestens) von einem Maven-Repository auf den Build-Rechner transferiert werden muss usw.

Zur Erinnerung: Jedes übertragene oder irgendwo gespeicherte Byte verbraucht Energie und trägt zum CO2-Ausstoß bei. Äußerst wenig natürlich, aber multipliziert mit einer extrem großen Häufigkeit ist das durchaus relevant. Und in diesem Fall unnötig. Bekanntlich tragen Rechenzentren zwischen 10 und 20% zum weltweiten Energieverbrauch bei. Mangelhafte Software-Effizienz trägt daran eine Mitschuld!

Hausaufgabe (zu morgen!): Den eigenen Code in Bezug auf diese Fragestellung in Augenschein nehmen.

Übrigens: In ehcache 3 hat man auf den Ballast verzichtet, das Artefakt ehcache-3.9.2.jar ist bloß 1,8 MB groß.

tl;dr: ehcache 2 schleppt unnötigen Ballast in jede damit arbeitende Anwendung. Um Energie und CO2 einzusparen, sollten Entwickler also zeitnah von Version 2.x auf 3.9 migrieren.

Voller als voll

Wenn der Speicher voll ist, wirft Java bekanntlich einen OutOfMemoryError:

Oha.

Tatsächlich kann der Speicher sogar so knapp werden, dass er nicht einmal genügt, um ein Objekte der Klasse OutOfMemoryError zu erzeugen …

Wer genau hinschaut, kann sehen, dass der Fehler von com.android.vending geworfen wurde, also dem Play Store auf einem Android-Smartphone. Einem virtuellen allerdings, denn das Ganze ist beim Vorveröffentlichungs-Test einer App passiert.

Exkurs

Kleiner Exkurs über Speicher unter Java?

Nein … nur ein klitzekleiner, das Thema ist so groß, dass es gerade nicht in meinen Arbeitsspeicher passt.

Beim Start müssen wir der virtuellen Maschine von Java einen gewissen Spielraum einräumen – Speicher, der dann dem Programm zur Verfügung steht, sei es für Bytecode oder Objekte (es ist wirklich kompliziert). Der Garbage Collector ist ja einer der Hauptgründe, Java zu verwenden, weil er die Entwicklung so schön einfach macht. Programmierer müssen sich keine Gedanken darüber machen, wann sie ihre erzeugten Objekte wieder wegschmeißen müssen. Der Preis ist natürlich, dass der Garbage Collector Rechenzeit verbraucht – und das kann beim Verzicht auf Optimierungen durchaus merkliche Auswirkungen haben.

Zu viel Dingsbums

Beispiel Spiele: Normalerweise besitzen Spiele einen Renderer, der 30 mal pro Sekunde (oder öfter) den Bildschirm neu zeichnet. Da normalerweise bewegliche Dingsbums mit von der Partie sind, müssen Berechnungen stattfinden. Zum Beispiel sind Vektoren zu addieren, etwa so:

Vector3 newLocation = new Vector3(move(dingsbums,oldLocation,timePassed));
drawAt(dingsbums,newLocation);

Die erste Zeile erzeugt ein neues Objekt (newLocation) auf dem Heap. Am Ende der Zeichenfunktion ist es überflüssig, d.h. der Garbage Collector wird es irgendwann wegräumen. Jetzt stellen Sie sich vor, dass deutlich mehr als ein Dingsbums auf dem Bildschirm ist. Alle müssen sich bewegen, für jedes entsteht ein neues Vector3-Objekt, und das 30 mal pro Sekunde. Sie können sich leicht ausrechnen, wie viele Objekte der Garbage Collector letztlich aufzuräumen hat. Schlimmstenfalls macht sich das als Ruckeln bemerkbar, auf jeden Fall verbraucht es Prozessorzeit und damit Energie (also Akkuladung).

Besser ist es also, Objekte wiederzuverwenden. Dingsbums sollte über einen permanenten Vector3 verfügen, nur dessen Koordinaten (vielleicht native floats) ändern sich noch:

move(dingsbums,timePassed);
drawAt(dingsbums.getLocation());

Profilieren

Sie können mit Android Studio im Profiler genauso wie mit Java-Tools wie jmx die Aktivität des Garbage Collectors verfolgen. Ein guter Hinweis ist ein zackiger Sägezahnverlauf der Speicherbelegung. Wird der GC sehr oft aktiv, deutet das auf Optimierungspotenzial hin. Der Profiler zeigt dann an, in welchem initializer besonders viel Zeit draufgeht – damit wissen Sie, welche Objekte womöglich zu oft erzeugt werden.

Bekanntlich beträgt der Anteil der CO2-Ausstoßes der IT weltweit mit ihren ganzen Rechenzentren geschätzt 10-20%. Je effizienter Ihre Anwendung arbeitet, umso weniger ist sie daran schuld. Klingt vielleicht banal, aber nicht wenn Ihre App auf Milliarden Smartphones installiert ist und milliardenfach verwendet wird (und das wollen Sie doch, oder?).

Mehr zum Thema Speicherverbrauch und Effizienz in naher Zukunft und in der nächsten Auflage meines Buchs “Besser coden”.